terça-feira, 11 de setembro de 2012

BOMBA DE SÓDIO E POTÁSSIO





Somando-se a esse fato, em repouso a membrana da célula nervosa é praticamente impermeável ao sódio, impedindo que esse íon se mova a favor de seu gradiente de concentração (de fora para dentro);  porém, é muito permeável ao potássio, que, favorecido pelo gradiente de concentração e pela permeabilidade da membrana, se difunde livremente para o meio extracelular.
Em repouso: canais de sódio fechados. Membrana é praticamente impermeável ao sódio, impedindo sua difusão a favor do gradiente de concentração.
Sódio é bombeado ativamente para fora pela bomba de sódio e potássio.
Como a saída de sódio não é acompanhada pela entrada de potássio na mesma proporção, estabelece-se uma diferença de cargas elétricas entre os meios intra e extracelular: há déficit de cargas positivas dentro da célula e as faces da membrana mantêm-se eletricamente carregadas.
O potencial eletronegativo criado no interior da fibra nervosa devido à bomba de sódio e potássio é chamado potencial de repouso da membrana, ficando o exterior da membrana positivo e o interior negativo. Dizemos, então, que a membrana está polarizada.  
Meio interno
Ao ser estimulada, uma pequena região da membrana torna-se permeável ao sódio (abertura dos canais de sódio). Como a concentração desse íon é maior fora do que dentro da célula, o sódio atravessa a membrana no sentido do interior da célula. A entrada de sódio é acompanhada pela pequena saída de potássio. Esta inversão vai sendo transmitida ao longo do axônio, e todo esse processo é denominado onda de despolarização. Os impulsos nervosos ou potenciais de ação são causados pela despolarização da membrana além de um limiar (nível crítico de despolarização que deve ser alcançado para disparar o potencial de ação). Os potenciais de ação assemelham-se em tamanho e duração e não diminuem à medida em que são conduzidos ao longo do axônio, ou seja,  são de tamanho e duração fixos. A aplicação de uma despolarização crescente a um neurônio não tem qualquer efeito até que se cruze o limiar e, então, surja o potencial de ação. Por esta razão, diz-se que os potenciais de ação obedecem à "lei do tudo ou nada".
Meio externo
Imediatamente após a onda de despolarização ter-se propagado ao longo da fibra nervosa, o interior da fibra torna-se carregado positivamente, porque um grande número de íons sódio se difundiu para o interior. Essa positividade determina a parada do fluxo de íons sódio para o interior da fibra, fazendo com que a membrana se torne novamente impermeável a esses íons. Por outro lado, a membrana torna-se ainda mais permeável ao potássio, que migra para o meio interno. Devido à alta concentração desse íon no interior, muitos íons se difundem, então, para o lado de fora. Isso cria novamente eletronegatividade no interior da membrana e positividade no exterior – processo chamado repolarização, pelo qual se reestabelece a polaridade normal da membrana. A repolarização normalmente se inicia no mesmo ponto onde se originou a despolarização, propagando-se ao longo da fibra. Após a repolarização, a bomba de sódio bombeia novamente os íons sódio para o exterior da membrana, criando um déficit extra de cargas positivas no interior da membrana, que se torna temporariamente mais negativo do que o normal. A eletronegatividade excessiva no interior atrai íons potássio de volta para o interior (por difusão e por transporte ativo). Assim, o processo traz as diferenças iônicas de volta aos seus níveis originais.  
Para transferir informação de um ponto para outro no sistema nervoso, é necessário que o potencial de ação, uma vez gerado, seja conduzido ao longo do axônio. Um potencial de ação iniciado em uma extremidade de um axônio apenas se propaga em uma direção, não retornando pelo caminho já percorrido. Conseqüentemente, os potenciais de ação são unidirecionais - ao que chamamos condução ortodrômica. Uma vez que a membrana axonal é excitável ao longo de toda sua extensão, o potencial de ação se propagará sem decaimento. A velocidade com a qual o potencial de ação se propaga ao longo do axônio depende de quão longe a despolarização é projetada à frente do potencial de ação, o que, por sua vez, depende de certas características físicas do axônio: a velocidade de condução do potencial de ação aumenta com o diâmetro axonal. Axônios com menor diâmetro necessitam de uma maior despolarização para alcançar o limiar do potencial de ação. Nesses de axônios, presença de bainha de mielina acelera a velocidade da condução do impulso nervoso. Nas regiões dos nódulos de Ranvier, a onda de despolarização "salta" diretamente de um nódulo para outro, não acontecendo em toda a extensão da região mielinizada (a mielina é isolante). Fala-se em condução saltatória e com isso há um considerável aumento da velocidade do impulso nervoso.  

Nenhum comentário:

Postar um comentário